ATTESTATION OF CONFORMITY

Issued to:

Afore New Energy Technology (Shanghai) Co., Ltd. Build No.7, 333 Wanfang Road, Minhang District, Shanghai, China

For the product:

Trade name:

On-Grid PV Inverter

Type/Model:	BNT012KTL, BNT013KTL, BNT015KTL,
	BNT017KTL, BNT020KTL, BNT025KTL
Ratings:	See Annex
Manufactured by:	Afore New Energy Technology (Shanghai) Co., Ltd. Build No.7, 333 Wanfang Road, Minhang District, Shanghai, China
Requirements:	Engineering Recommendation G99 Issue 1 – Amendment 8: 2021

This Attestation is granted on account of an examination by DEKRA, the results of which are laid down in a confidential file no. 6136782,51

The examination has been carried out on one single specimen or several specimens of the product, submitted by the manufacturer. The Attestation does not include an assessment of the manufacturer's production. Conformity of his production with the specimen tested by DEKRA is not the responsibility of DEKRA.

Arnhem, 11 August 2022

Number: 6136782.02AOC

DEKRA Testing and Certification (Shanghai) Ltd.

Kreny Lin Certification Manager

 $\ensuremath{\mathbb{C}}$ Integral publication of this attestation and adjoining reports is allowed

Page 1 of 15

DEKRA Testing and Certification (Shanghai) Ltd. 3F #250 Jiangchangsan Road Shibei Hi-Tech Park, 200436 Jing'an District, Shanghai, China T +86 21 6056 7666 F +86 21 6056 7555 www.dekra-product-safety.com

> DEKRA

Ratings of the test product: Operating temperature range: - 25°C to + 60°C Protective class: I Ingress protection rating: IP65 Power factor range (adjustable): 0.8 leading...0.8 lagging

BNT012KTL:

PV input: Max. 1100 Vdc, MPPT voltage range: 150-1000 Vdc, max 15*2 A, Isc PV: 25*2 A AC Output: 3P+N+PE/ 3P+PE, 230/ 400 Vac, 50/ 60 Hz, Nominal 12000 VA, rated 17.4 A, max 21.5 A

BNT013KTL:

PV input: Max. 1100 Vdc, MPPT voltage range: 150-1000 Vdc, max 15*2 A, Isc PV: 25*2 A AC Output: 3P+N+PE/ 3P+PE, 230/ 400 Vac, 50/ 60 Hz, Nominal 13000 VA, rated 18.9 A, max 22.0 A

BNT015KTL:

PV input: Max. 1100 Vdc, MPPT voltage range: 150-1000 Vdc, max 20 A + 32 A, Isc PV: 30 A + 48 A AC Output: 3P+N+PE/ 3P+PE, 230/ 400 Vac, 50/ 60 Hz, Nominal 15000 VA, rated 21.8 A, max 27.0 A

BNT017KTL:

PV input: Max. 1100 Vdc, MPPT voltage range: 150-1000 Vdc, max 32*2 A, Isc PV: 48*2 A AC Output: 3P+N+PE/ 3P+PE, 230/ 400 Vac, 50/ 60 Hz, Nominal 17000 VA, rated 24.7 A, max 30.0 A

BNT020KTL:

PV input: Max. 1100 Vdc, MPPT voltage range: 150-1000 Vdc, max 32*2 A, Isc PV: 48*2 A AC Output: 3P+N+PE/ 3P+PE, 230/ 400 Vac, 50/ 60 Hz, Nominal 20000 VA, rated 29.0 A, max 32.0 A

BNT025KTL:

PV input: Max. 1100 Vdc, MPPT voltage range: 150-1000 Vdc, max 32*2 A, Isc PV: 48*2 A AC Output: 3P+N+PE/ 3P+PE, 230/ 400 Vac, 50/ 60 Hz, Nominal 25000 VA, rated 36.3 A, max 40.0 A

G99/1-8 A2-3 Compliance Verification Report –Tests for Type A Inverter Connected Power Generating Modules

Extract form test report number.:

6136782.51

1. Operating Range:

Ρ

Two tests should be carried with the **Power Generating Module** operating at **Registered Capacity** and connected to a suitable test supply or grid simulation set. The power supplied by the primary source shall be kept stable within ± 5 % of the apparent power value set for the entire duration of each test sequence.

Frequency, voltage and **Active Power** measurements at the output terminals of the **Power Generating Module** shall be recorded every second. The tests will verify that the **Power Generating Module** can operate within the required ranges for the specified period of time.

The **Interface Protection** shall be disabled during the tests. In case of a PV **Power Park Module** the PV primary source may be replaced by a DC source. In case of a full converter **Power Park Module** (eg wind) the primary source and the prime mover

Inverter/rectifier may be replaced by a DC source.

Pass or failure of the test should be indicated in the fields below (right hand side), for example with the statement "Pass", "No disconnection occurs", etc. Graphical evidence is preferred. Note that the value of voltage stated in brackets assumes a **LV** connection. This should be adjusted for **HV** as required.

Model: BNT025KTL

Test 1:				
Measured Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Time (seconds)
195.66	47.00	23197.37	0.9995	20
Test 2:				
Measured Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Time (Minutes)
195.68	47.50	23209.43	0.9994	90
Test 3:				
Measured Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Time (Minutes)
253.22	51.50	25049.54	0.9993	90
Test 4:				
Measured Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Time (Minutes)
253.20	52.00	25029.81	0.9992	15
Test 5:				
Measured Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Time (Minutes)
230.56	50.00	25063.59	0.9989	90
Test 6:				
Measured Voltage (V)	Ramp range	Test frequency ramp	Test Duration	Confirm no trip
195.5	47.0 Hz to 52.0 Hz	+1 Hzs ⁻¹	5.0s	No trip
253.0	52.0 Hz to 49.0 Hz	-1 Hzs ⁻¹	3.0s	No trip

2. Power Quality – Harmonics:										
For Power Generating Modules of Registered Capacity of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12, and measurements for the 2 nd – 13 th harmonics should be provided. The results need to comply with the limits of Table 2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment. For three phase Power Generating Modules , measurements for all phases should be provided.										
installation The rating Harmonic bottom of t	must be dea of the Powe Distortion (T this section.	signed in ac F Generatin	cordance wi g Module (p	th EREC G5 per phase) s	hould be pro	ovided belo	r phase (ie 50 w, and the Tot uld be provide	al		
Model: BN										
	nerating Mo			1000-3-12	1	1				
(rpp)	nerating Mo	dule rating	per phase	4	kVA		ic % = Measur /rating per pha			
Single or the	hree phase r se measurer s below)			three phas	e PV inverte					
Harmonic	At 45-55%	of Register	ed Capacity	/			Limit in BS E	N 61000-		
Harmonic	Measured Value (MV) in Amps Measured Value (MV) in % 3-12									
	L1	L2	L3	L1	L2	L3	1 phase	3 phase		
2	0.144	0.185	0.191	0.827	1.061	1.097	8%	8%		
3	0.025	0.019	0.041	0.145	0.109	0.238	21.6%	Not stated		
4	0.092	0.091	0.096	0.528	0.522	0.555	4%	4%		
5	0.137	0.147	0.149	0.789	0.844	0.858	10.7%	10.7%		
6	0.010	0.010	0.008	0.055	0.058	0.047	2.67%	2.67%		
7	0.102	0.068	0.108	0.585	0.390	0.620	7.2%	7.2%		
8	0.014	0.016	0.015	0.079	0.092	0.085	2%	2%		
9	0.007	0.017	0.018	0.042	0.098	0.101	3.8%	Not stated		
10	0.010	0.011	0.010	0.056	0.063	0.060	1.6%	1.6%		
11	0.029	0.025	0.021	0.168	0.144	0.122	3.1%	3.1%		
12	0.005	0.006	0.006	0.031	0.033	0.032	1.33%	1.33%		
13	0.040	0.012	0.033	0.230	0.071	0.189	2%	2%		
THD	-	-	-	4.140	4.420	4.640	23%	13%		
PWHD	-	-	-	11.187	11.425	11.537	23%	22%		
Harmonic		f Registered					Limit in BS E	N 61000-		
		Value (MV)	•		Value (MV)		3-12			
	L1	L2	L3	L1	L2	L3	1 phase	3 phase		
2	0.218	0.267	0.292	1.256	1.537	1.680	8%	8%		
3	0.053	0.015	0.078	0.306	0.085	0.447	21.6%	Not stated		
4	0.179	0.163	0.170	1.027	0.937	0.980	4%	4%		
5	0.178	0.209	0.214	1.025	1.202	1.230	10.7%	10.7%		
6	0.009	0.011	0.013	0.050	0.062	0.076	2.67%	2.67%		

7	0.180	0.137	0.161	1.034	0.789	0.927	7.2%	7.2%
8	0.051	0.052	0.053	0.291	0.300	0.305	2%	2%
9	0.016	0.011	0.017	0.094	0.062	0.095	3.8%	Not stated
10	0.052	0.060	0.056	0.300	0.342	0.321	1.6%	1.6%
11	0.190	0.188	0.195	1.093	1.083	1.123	3.1%	3.1%
12	0.006	0.006	0.008	0.035	0.033	0.044	1.33%	1.33%
13	0.192	0.162	0.172	1.103	0.933	0.991	2%	2%
THD				3.160	3.210	3.410	23%	13%
PWHD				5.076	5.140	5.210	23%	22%

Model: BN	T025KTL								
Power Ge	nerating Mo	odule tested	to BS EN 6	1000-3-12					
Power Generating Module rating per phase (rpp)				8.33 k		kVA	Harmonic % = Measured Value (A) x 23/rating per phase (kVA)		
0	Single or three phase measurements (for single phase measurements, only complete			three phas	o D\/ in	vorto	r		
L1 columns below)			thee phas		verte	I			
	At 45-55%	ed Capacity	/				Limit in BS	EN 61000-	
Harmonic	Measured	Value (MV)	in Amps	Measured	Value (I	MV) i	n %	3-12	
	L1	L2	L3	L1	L2		L3	1 phase	3 phase
2	0.229	0.250	0.235	0.632	0.69	0	0.649	8%	8%
3	0.046	0.025	0.066	0.127	0.07	0	0.183	21.6%	Not stated
4	0.155	0.152	0.147	0.428	0.42	20	0.407	4%	4%
5	0.330	0.335	0.360	0.910	0.92	25	0.993	10.7%	10.7%
6	0.008	0.010	0.010	0.022	0.02	28	0.028	2.67%	2.67%
7	0.216	0.218	0.177	0.597	0.60)2	0.489	7.2%	7.2%
8	0.041	0.042	0.043	0.114	0.11	5	0.119	2%	2%
9	0.012	0.016	0.018	0.033	0.04	5	0.049	3.8%	Not stated
10	0.048	0.049	0.047	0.132	0.13	35	0.130	1.6%	1.6%
11	0.174	0.167	0.174	0.481	0.46	52	0.482	3.1%	3.1%
12	0.005	0.007	0.007	0.014	0.02	20	0.019	1.33%	1.33%
13	0.166	0.179	0.138	0.459	0.49)3	0.381	2%	2%
THD	-	-	-	3.400	3.43	80	3.450	23%	13%
PWHD	-	-	-	4.681	4.65	5	4.883	23%	22%
Harmonic	At 100% o	f Registered	Capacity		·			Limit in BS	EN 61000-
Measured Value (MV) in Amps			Measured Value (MV) in %			3-12			
	L1	L2	L3	L1	L2		L3	1 phase	3 phase
2	0.281	0.337	0.369	0.775	0.93	31	1.018	8%	8%

Annex to 6136782.02AOC

3	0.070	0.030	0.104	0.193	0.082	0.288	21.6%	Not stated
4	0.233	0.218	0.221	0.643	0.603	0.609	4%	4%
5	0.108	0.165	0.137	0.297	0.456	0.378	10.7%	10.7%
6	0.012	0.012	0.015	0.033	0.034	0.040	2.67%	2.67%
7	0.095	0.160	0.153	0.264	0.442	0.424	7.2%	7.2%
8	0.045	0.042	0.040	0.123	0.117	0.109	2%	2%
9	0.016	0.016	0.039	0.043	0.044	0.108	3.8%	Not stated
10	0.043	0.048	0.050	0.119	0.134	0.139	1.6%	1.6%
11	0.108	0.098	0.101	0.298	0.271	0.280	3.1%	3.1%
12	0.009	0.009	0.008	0.024	0.025	0.023	1.33%	1.33%
13	0.143	0.178	0.119	0.395	0.490	0.328	2%	2%
THD	-	-	-	1.640	1.800	1.850	23%	13%
PWHD	-	-	-	3.683	3.632	3.786	23%	22%

THD = Total Harmonic Distortion

PWHD = Partial Weighted Harmonic Distortion

3. Power Quality – Voltage fluctuations and Flicker:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) these tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable Maximum Impedance.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC P28.

The standard test impedance is 0.4 Ω for a single phase **Power Generating Module** (and for a two phase unit in a three phase system) and 0.24 Ω for a three phase **Power Generating Module** (and for a two phase unit in a split phase system). Please ensure that both test and standard impedance are completed on this form. If the test impedance (or the measured impedance) is different to the standard impedance, it must be normalised to the standard impedance as follows (where the **Power Factor** of the generation output is 0.98 or above):

d max normalised value = (Standard impedance / Measured impedance) x Measured value.

Where the **Power Factor** of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the standard impedance.

The stopping test should be a trip from full load operation.

The duration of these tests needs to comply with the particular requirements set out in the testing notes for the technology under test.

The test date and location must be declared.

Model:		BNT025KT	L					
L1								
		Starting			Stopping		Run	ning
	d(max)	d(c)	d(t)	d(max)	d(c)	d(t)	Pst	P _{lt} 2 hours
Measured Values at	0.73	0.05	0	0.84	0.05	0	0.45	0.39

test impedance									
Normalised to standard impedance	0.73	0.05	0		0.84	0.05	0	0.45	0.39
Normalised to required maximum impedance	N/A	N/A	N/A		N/A	N/A	N/A	N/A	N/A
Limits set under BS EN 61000- 3-11	4%	3.3%	3.3%	, 0	4%	3.3%	3.3%	1.0	0.65
Test Impedance	R	0	.4		Ω	XI	().25	Ω
Standard Impedance	R		24 * 4 ^		Ω	XI		.15 * .25 ^	Ω
Maximum Impedance	R	N/	A #		Ω	XI	1	J/A #	Ω
* Annline to th	nna nhaca r	and enlit ein	alo nhoc		wor Cono	rating Modu			

* Applies to three phase and split single phase **Power Generating Modules**. ^ Applies to single phase **Power Generating Module** and **Power Generating Modules** using two phases on a three phase system. Delete as appropriate.

Model:		BNT025K	ΓL					
				L2				
		Starting			Stopping		R	unning
	d(max)	d(c)	d(t)	d(max)	d(c)	d(t)	Pst	Plt 2 hours
Measured Values at test impedance	0.75	0.04	0	0.81	0.05	0	0.43	0.38
Normalised to standard impedance	0.75	0.04	0	0.81	0.05	0	0.43	0.38
Normalised to required maximum impedance	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Limits set under BS EN 61000- 3-11	4%	3.3%	3.3%	. 4%	3.3%	3.3%	1.0	0.65
Test Impedance	R).4	Ω	XI		.25	Ω
Standard Impedance	R		24 * 4 ^	Ω	XI		15 * 25 ^	Ω
Maximum Impedance	R	N	/A #	Ω	XI		/A #	Ω

* Applies to three phase and split single phase **Power Generating Modules**.

^ Applies to single phase **Power Generating Module** and **Power Generating Modules** using two phases on a three phase system. Delete as appropriate.

Model:		BNT025KT	Ľ					
				L3				
	Starting				Stopping		F	Running
	d(max)	d(c)	d(t)	d(max)	d(c)	d(t)	P _{st}	P _{lt} 2 hours
Measured Values at test impedance	0.61	0.06	0	0.80	0.06	0	0.48	0.44
Normalised to standard impedance	0.61	0.06	0	0.80	0.06	0	0.48	0.44
Normalised to required maximum impedance	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Limits set under BS EN 61000- 3-11	4%	3.3%	3.3%	5 4%	3.3%	3.3%	1.0	0.65
Test Impedance	R	0	.4	Ω	XI	0	.25	Ω
Standard Impedance	R		24 * 4 ^	Ω	XI		15 * 25 ^	Ω
Maximum Impedance	R	N/	A #	Ω	XI		/A #	Ω

 * Applies to three phase and split single phase Power Generating Modules.

^ Applies to single phase **Power Generating Module** and **Power Generating Modules** using two phases on a three phase system. Delete as appropriate.

4. Power quality – DC injection:

The tests should be carried out on a single **Generating Unit**. Tests are to be carried out at three defined power levels $\pm 5\%$. At 230 V a 50 kW three phase **Inverter** has a current output of 217 A so DC limit is 543 mA. These tests should be undertaken in accordance with Annex A.7.1.4.4. The % DC injection ("as % of rated AC current" below) is calculated as follows:

% DC injection = Recorded DC value in Amps / Base current

where the base current is the **Registered Capacity** (W) / Vphase. The % DC injection should not be greater than 0.25%.

Model: BNT012KTL

L1									
Test power level	10%	55%	100%						
Recorded DC injection value in Amps	-0.022	-0.024	-0.024						
as % of rated AC current	-0.127%	-0.138%	-0.138%						
Limit	0.25%	0.25%	0.25%						
L2									
Test power level	10%	55%	100%						

Recorded DC injection value in Amps	-0.033	-0.033	-0.032						
as % of rated AC current	-0.190%	-0.190%	-0.184%						
Limit	0.25%	0.25%	0.25%						
L3									
Test power level	10%	55%	100%						
Recorded DC injection value in Amps	-0.021	-0.027	-0.026						
as % of rated AC current	-0.121%	-0.155%	-0.150%						
Limit	0.25%	0.25%	0.25%						

Model: BNT025KTL			
	l	_1	
Test power level	10%	55%	100%
Recorded DC injection value in Amps	0.02	0.03	-0.04
as % of rated AC current	0.055%	0.083%	-0.110%
Limit	0.25%	0.25%	0.25%
	l	_2	
Test power level	10%	55%	100%
Recorded DC injection value in Amps	-0.01	-0.03	-0.05
as % of rated AC current	-0.028%	-0.083%	-0.138%
Limit	0.25%	0.25%	0.25%
	l	.3	
Test power level	10%	55%	100%
Recorded DC injection value in Amps	-0.01	-0.03	-0.04
as % of rated AC current	-0.028%	-0.083%	-0.110%
Limit	0.25%	0.25%	0.25%

Ρ

5. Power Factor:

The tests should be carried out on a single **Power Generating Module**. Tests are to be carried out at three voltage levels and at **Registered Capacity** and the measured **Power Factor** must be greater than 0.95 to pass. Voltage to be maintained within ±1.5% of the stated level during the test. These tests should be undertaken in accordance with Annex A.7.1.4.2

Note that the value of voltage stated in brackets assumes a **LV** connection. This should be adjusted for **HV** as required.

Model: BNT012KTL			
Voltage	0.94 pu (216.2 V)	1 pu (230 V)	1.1 pu (253 V)
Measured value	0.9998	0.9998	0.9998
Power Factor Limit	>0.95	>0.95	>0.95
Model: BNT025KTL			
Voltage	0.94 pu (216.2 V)	1 pu (230 V)	1.1 pu (253 V)
Measured value	0.9999	0.9999	0.9999
Power Factor Limit	>0.95	>0.95	>0.95

6. Protection – Frequency tests:

These tests should be carried out in accordance with the Annex A.7.1.2.3. For trip tests, frequency and time delay should be stated. For "no trip tests", "no trip" can be stated.

Model: BNT025KTL

Function	Setting		Trip test	Trip test		"No trip tests"	
	Frequency	Time delay	Frequency	Time delay	Frequency / time	Confirm no trip	
U/F stage 1	47.5 Hz	20 s	47.49Hz	20.28s	47.7 Hz 30 s	No trip	
U/F stage 2	47.0 Hz	0.5 s	47.00Hz	0.560s	47.2 Hz 19.5 s	No trip	
					46.8 Hz 0.45 s	No trip	
O/F	52.0 Hz	0.5 s	52.00Hz	0.557s	51.8 Hz 120.0 s	No trip	
					52.2 Hz 0.45 s	No trip	
time delay a	quency trip tests larger deviation	than the minimu		perate the proje	.1 Hz. In order t	ed. The "No	

trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Ρ

7. Protection – Voltage tests:

These tests should be carried out in accordance with Annex A.7.1.2.2. For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

Note that the value of voltage stated below assumes a LV connection This should be adjusted for HV taking account of the VT ratio as required.

Model: BNT025KTL

			L1			
Function	Setting		Trip test		"No trip tests"	I
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confirm no trip
U/V	0.8 pu (184 V)	2.5 s	183.4V	2.565s	188 V 5.0 s	No trip
					180 V 2.45 s	No trip
O/V stage 1	1.14 pu (262.2 V)	1.0 s	263.1V	1.036s	258.2 V 5.0 s	No trip
O/V stage 2	1.19 pu (273.7 V)	0.5 s	274.6V	0.548s	269.7 V 0.95 s	No trip
					277.7 V 0.45 s	No trip

Note: For Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7. Protection – Voltage tests:

These tests should be carried out in accordance with Annex A.7.1.2.2. For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

Note that the value of voltage stated below assumes a **LV** connection This should be adjusted for **HV** taking account of the VT ratio as required.

Model: BNT025KTL

			L2			
Function	Setting		Trip test		"No trip tests"	I
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confirm no trip
U/V	0.8 pu (184 V)	2.5 s	182.5V	2.555s	188 V 5.0 s	No trip
					180 V 2.45 s	No trip
O/V stage 1	1.14 pu (262.2 V)	1.0 s	263.4V	1.042s	258.2 V 5.0 s	No trip
O/V stage 2	1.19 pu (273.7 V)	0.5 s	273.9V	0.546s	269.7 V 0.95 s	No trip
					277.7 V 0.45 s	No trip

Note: For Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7. Protection – Voltage tests:

Ρ

These tests should be carried out in accordance with Annex A.7.1.2.2. For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

Note that the value of voltage stated below assumes a LV connection This should be adjusted for HV taking account of the VT ratio as required.

Model: BNT025KTL

L3								
Function	Setting		Trip test		"No trip tests"			
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confirm no trip		
U/V	0.8 pu (184 V)	2.5 s	183.3V	2.564s	188 V 5.0 s	No trip		
					180 V 2.45 s	No trip		
O/V stage 1	1.14 pu (262.2 V)	1.0 s	263.8V	1.062s	258.2 V 5.0 s	No trip		
O/V stage 2	1.19 pu (273.7 V)	0.5 s	275.3V	0.522s	269.7 V 0.95 s	No trip		
					277.7 V 0.45 s	No trip		

Note: For Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8. Protection – Loss of Mains test:								
These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4. For test condition A, EUT output = $100 \% P_n$, test condition B, EUT output = 50% to $66 \% P_n$, and test condition C, EUT output = 25% to $33 \% P_n$.								
Model: BNT0	25KTL							
The following	sub set of test	s should be reco	rded in the follow	wing table.				
Test Power and imbalance	33% -5% Q Test 22	66% -5% Q Test 12	100% -5% P Test 5	33% +5% Q Test 31	66% +5% Q Test 21	100% +5% P Test 10		
Trip time. Limit is 0.5s	0.103s	0.209s	0.225s	0.115s	0.214s	0.265s		

8. Loss of Mains Protect	ion, Vector Shift Stability	test:		Р					
This test should be carried out in accordance with Annex A.7.1.2.6. Confirmation is required that the Power Generating Module does not trip under positive / negative vector shift.									
Model: BNT025KTL									
	Start Frequency	Change	Confirm no trip						
Positive Vector Shift	49.5 Hz	+50 degrees	No trip						
Negative Vector Shift	50.5 Hz	- 50 degrees	No trip						
8. Loss of Mains Protect	ion, RoCoF Stability test:	·		Р					
		nex A.7.1.2.6. Confirmation ation of the ramp up and ram	•	the					
Model: BNT025KTL									
Ramp range	Test frequency ramp:	Test Duration	Confirm no trip						
49.0 Hz to 51.0 Hz	49.0 Hz to 51.0 Hz +0.95 Hzs ⁻¹ 2.1 s No trip								
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹	2.1 s	No trip						

9. Limited Frequency Sens	itive Mode – O	ver frequency	test:			Ρ
The test should be carried or This test should be carried o tolerances.	ut in accordanc	e with A.7.1.3,	which also cont	ains the measure	ement	%.
Active Power response to ri are undertaken in accordance			attached if frequ	ency injection tes	sts	Ν
Model: BNT025KTL						
Alternatively, simulation resu	ilts should be no	oted below:				
Test sequence at Registered Capacity >80%	Measured Active Power Output (W)	Frequency (Hz)	Calculated droop (%)	Primary Power Source	Acti Pow Grad	er
Step a) 50.00 Hz ±0.01 Hz	25010.73	50.00	-			-
Step b) 50.45 Hz ±0.05 Hz	24743.82	50.45	9.37		-	
Step c) 50.70 Hz ±0.10 Hz	23461.06	50.70	9.68	Photovoltaic		-
Step d) 51.15 Hz ±0.05 Hz	21230.65	51.15	9.92	array	-	
Step e) 50.70 Hz ±0.10 Hz	23394.69	50.70	9.29	simulator	-	
Step f) 50.45 Hz ±0.05 Hz	24740.85	50.45	9.27			
Step g) 50.00 Hz ±0.01 Hz	25008.08	50.00	-			-
Test sequence at Registered Capacity 40- 60%	Measured Active Power Output (W)	Frequency (Hz)	Calculated droop (%)	Primary Power Source	Acti Pow Grad	er
Step a) 50.00 Hz ±0.01 Hz	12512.11	50.00	-			-
Step b) 50.45 Hz ±0.05 Hz	12373.87	50.45	9.05	Photovoltaic		-
Step c) 50.70 Hz ±0.10 Hz	11743.70	50.70	9.77	array simulator		-
Step d) 51.15 Hz ±0.05 Hz	10624.64	51.15	9.94			-

Step e) 50.70 Hz ±0.10 Hz	11717.21	50.70	9.44	-
Step f) 50.45 Hz ±0.05 Hz	12369.23	50.45	8.76	-
Step g) 50.00 Hz ±0.01 Hz	12516.95	50.00	-	-

The frequency at each step should be maintained for at least one minute and the Active Power reduction in the form of a gradient determined and assessed for compliance with paragraph 11.2.3. The Droop should be determined from the measurements between 50.4 Hz and 51.15 Hz. The allowed tolerance for the frequency measurement shall be ± 0.05 Hz. The allowed tolerance for Active Power output measurement shall be $\pm 10\%$ of the required change in Active Power.

The resulting overall tolerance range for a nominal 10% Droop is +2.8% and – 1.5%, ie a Droop less than 12.8% and greater than 8.5%.

10. Protection – Re-connection timer									
Model: BNT025	Model: BNT025KTL								
Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 10.1. Both the time delay setting and the measured delay should be provided in this form; both should be greater than 20 s to pass. Confirmation should be provided that the Power Generating Module does not reconnect at the voltage and frequency settings below; a statement of "no reconnection" can be made.									
Time delay	Measured			oltage or frequency	/ is brou	ught to			
setting	delay	just outside stage	e 1 limits of Table 1	0.1.					
60 s	60.8 s	At 1.16 pu (266.2 V LV connection, 127.6 V HV connection assuming 110 Vph-ph VT)	At 0.78 pu (180.0 V LV connection, 85.8 V HV connection assuming 110 V ph-ph VT)	At 47.4 Hz	At §	52.1 Hz			
Confirmation that the Power Generating Module does not re-connect.NoNoNoReconnectionReconnectionReconnectionReconnection					Reco	No onnection			

11. Fault level contribution:							
These tests shall be carried out in accordance with EREC G99 Annex A.7.1.5. Please complete each entry, even if the contribution to the fault level is zero.							
Model: BNT025KTL							
For Inverter output							
Time after fault	Volts	Amps					
20ms	53.87 V	43.13 A					
100ms	-	-					
250ms	-	-					
500ms	-	-					
Time to trip	14 ms	In seconds					

п

12. Self-Monitoring solid state switching: No specified test requirements. Refer to Annex A.7.1.6.	
It has been verified that in the event of the solid state switching device failing to disconnect the Power Park Module , the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 s.	Yes
13. Wiring functional tests: If required by para 15.2.1.	
Confirm that the relevant test schedule is attached (tests to be undertaken at time of commissioning)	Yes
14. Logic interface (input port).	
Confirm that an input port is provided and can be used to shut down the module.	Yes
Provide high level description of logic interface, e.g. details in 11.1.3.1 such as AC or DC signal (the additional comments box below can be used)	NA
15. Cyber security	
Confirm that the Power Generating Module has been designed to comply with cyber security requirements, as detailed in 9.1.7.	N/E
Additional comments.	